Efforts to generate whole genome assemblies and dense genetic maps have provided a wealth of gene positional information for several vertebrate species. Comparing the relative location of orthologous genes among these genomes provides perspective on genome evolution and can aid in translating genetic information between distantly related organisms. However, large-scale comparisons between genetic maps and genome assemblies can prove challenging because genetic markers are commonly derived from transcribed sequences that are incompletely and variably annotated. We developed the program MapToGenome as a tool for comparing transcript maps and genome assemblies. MapToGenome processes sequence alignments between mapped transcripts and whole genome sequence while accounting for the presence of intronic sequences, and assigns orthology based on user-defined parameters. To illustrate the utility of this program, we used MapToGenome to process alignments between vertebrate genetic maps and genome assemblies 1) self/self alignments for maps and assemblies of the rat and zebrafish genome; 2) alignments between vertebrate transcript maps (rat, salamander, zebrafish, and medaka) and the chicken genome; and 3) alignments of the medaka and zebrafish maps to the pufferfish (Tetraodon nigroviridis) genome. Our results show that map-genome alignments can be improved by combining alignments across presumptive intron breaks and ignoring alignments for simple sequence length polymorphism (SSLP) marker sequences. Comparisons between vertebrate maps and genomes reveal broad patterns of conservation among vertebrate genomes and the differential effects of genome rearrangement over time and across lineages.

Document Type


Publication Date


Notes/Citation Information

Published in Evolutionary Bioinformatics, v. 3, p. 15-25.

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Digital Object Identifier (DOI)


Funding Information

This project was supported by Grant Number IBN-0242833 from the National Science Foundation CAREER Award program and by Grant Numbers 5-R24-RR016344–06 and 5P20RR016481–05 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH).

MapToGenome supplementary file.zip (2536 kB)
Supplementary file