Abstract
Sudemycin E is an analog of the pre-messenger RNA splicing modulator FR901464 and its derivative spliceostatin A. Sudemycin E causes the death of cancer cells through an unknown mechanism. We found that similar to spliceostatin A, sudemycin E binds to the U2 small nuclear ribonucleoprotein (snRNP) component SF3B1. Native chromatin immunoprecipitations showed that U2 snRNPs physically interact with nucleosomes. Sudemycin E induces a dissociation of the U2 snRNPs and decreases their interaction with nucleosomes. To determine the effect on gene expression, we performed genome-wide array analysis. Sudemycin E first causes a rapid change in alternative pre-messenger RNA splicing, which is later followed by changes in overall gene expression and arrest in the G2 phase of the cell cycle. The changes in alternative exon usage correlate with a loss of the H3K36me3 modification in chromatin encoding these exons. We propose that sudemycin E interferes with the ability of U2 snRNP to maintain an H3K36me3 modification in actively transcribed genes. Thus, in addition to the reversible changes in alternative splicing, sudemycin E causes changes in chromatin modifications that result in chromatin condensation, which is a likely contributing factor to cancer cell death.
Document Type
Article
Publication Date
4-2014
Digital Object Identifier (DOI)
http://dx.doi.org/10.1093/nar/gku151
Repository Citation
Convertini, Paolo; Shen, Manli; Potter, Philip M.; Palacios, Gustavo; Lagisetti, Chandraiah; de la Grange, Pierre; Horbinski, Craig; Fondufe-Mittendorf, Yvonne N.; Webb, Thomas R.; and Stamm, Stefan, "Sudemycin E Influences Alternative Splicing and Changes Chromatin Modifications" (2014). Molecular and Cellular Biochemistry Faculty Publications. 53.
https://uknowledge.uky.edu/biochem_facpub/53
Supplementary Data
Notes/Citation Information
Published in Nucleic Acids Research, v. 42, issue 8, p. 4947-4961.
© The Author(s) 2014. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.