Abstract

Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease.

Document Type

Article

Publication Date

1-22-2015

Notes/Citation Information

Published in Molecular Cell, v. 57, no. 2, p. 261-272.

The document available for download is the authors' post-peer-review final draft of the article.

Digital Object Identifier (DOI)

http://dx.doi.org/10.1016/j.molcel.2014.11.020

SUPPLEMENTAL Experimental Procedures8.pdf (2089 kB)
Supplemental Information

combinedfigures.pdf (8816 kB)
Supplemental Figures

Table 1.docx (81 kB)
Table 1

Share

COinS