Theme 1: Grassland Ecology

Description

Predicting the reproductive phenology in perennial grasses is a major concern because it determines the quantity and quality of forage. It varies a lot depending on site, year and cultivar. Projections of future climates suggest significant changes in seasonal temperature pattern, with new combinations of temperature and photoperiod, whose consequences on the floral induction of perennial grasses are unknown. L-GrassF is a new Functional Structural Plant Model simulating genetic variability of the phenology of perennial ryegrass in order to better understand the perenniality of grasslands and better anticipate the effects of climate change. L-GrassF stems from a previous model (L-Grass) and now simulates the reproductive stages by integrating the interactions between vegetative growth, floral induction and reproductive organ development. The sensitivity analysis of a set of parameters was studied in the range of oceanic temperate climate conditions, on several European cultivars. It was further calibrated and validated on two independent datasets from the French Variety and Seed Study and Control Group (GEVES), which include the observations of heading dates for seven cultivars of Lolium perenne grown in six French locations between 2001 and 2017.

Share

COinS
 

L-Grassf: A New Model for Simulating the Genetic Environment Interactions on the Reproductive Phenology of Grasses

Predicting the reproductive phenology in perennial grasses is a major concern because it determines the quantity and quality of forage. It varies a lot depending on site, year and cultivar. Projections of future climates suggest significant changes in seasonal temperature pattern, with new combinations of temperature and photoperiod, whose consequences on the floral induction of perennial grasses are unknown. L-GrassF is a new Functional Structural Plant Model simulating genetic variability of the phenology of perennial ryegrass in order to better understand the perenniality of grasslands and better anticipate the effects of climate change. L-GrassF stems from a previous model (L-Grass) and now simulates the reproductive stages by integrating the interactions between vegetative growth, floral induction and reproductive organ development. The sensitivity analysis of a set of parameters was studied in the range of oceanic temperate climate conditions, on several European cultivars. It was further calibrated and validated on two independent datasets from the French Variety and Seed Study and Control Group (GEVES), which include the observations of heading dates for seven cultivars of Lolium perenne grown in six French locations between 2001 and 2017.