Abstract
Estimating the causal effect of a single nucleotide variant (SNV) on clinical phenotypes is of interest in many genetic studies. The effect estimation may be confounded by other SNVs as a result of linkage disequilibrium as well as demographic and clinical characteristics. Because a large number of these other variables, which we call potential confounders, are collected, it is challenging to select and adjust for the variables that truly confound the causal effect. The Bayesian adjustment for confounding (BAC) method has been proposed as a general method to estimate the average causal effect in the presence of a large number of potential confounders under the assumption of no unmeasured confounders. In this paper, we explore the application of BAC in genetic studies using Genetic Analysis Workshop 19 exome sequencing data. Our results show that BAC can efficiently estimate the causal effect of genetic variants with adjustment for confounding. Consequently, BAC may serve as a useful tool for genome-wide association studies data analysis to effectively assess the causal effect of genetic variants and the impact of potential interventions.
Document Type
Conference Proceeding
Publication Date
10-18-2016
Digital Object Identifier (DOI)
https://doi.org/10.1186/s12919-016-0064-3
Funding Information
This work was partially supported by the National Institute on Aging (DWF: K25AG043546).
Related Content
The GAW19 whole genome sequence data were provided by the T2D-GENES Consortium, which is supported by NIH grants U01 DK085524, U01 DK085584, U01 DK085501, U01 DK085526, and U01 DK085545. The other genetic and phenotypic data for Genetic Analysis Workshop 18 were provided by the San Antonio Family Heart Study and San Antonio Family Diabetes/Gallbladder Study, which are supported by NIH grants P01 HL045222, R01 DK047482, and R01 DK053889.
Repository Citation
Wang, Chi; Liu, Jinpeng; and Fardo, David W., "Causal Effect Estimation in Sequencing Studies: A Bayesian Method to Account for Confounder Adjustment Uncertainty" (2016). Biostatistics Faculty Publications. 27.
https://uknowledge.uky.edu/biostatistics_facpub/27
Notes/Citation Information
Published in BMC Proceedings, v. 10, suppl. 7, 38, p. 411-415.
© The Author(s). 2016
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.