Abstract

MicroRNAs (miRNAs) are small (20-22 nucleotides) regulatory non-coding RNAs that strongly influence gene expression. Most prior studies addressing the role of miRNAs in neurodegenerative diseases (NDs) have focused on individual diseases such as Alzheimer's disease (AD), making disease-to-disease comparisons impossible. Using RNA deep sequencing, we sought to analyze in detail the small RNAs (including miRNAs) in the temporal neocortex gray matter from non-demented controls (n = 2), AD (n = 5), dementia with Lewy bodies (n = 4), hippocampal sclerosis of aging (n = 4), and frontotemporal lobar dementia (FTLD) (n = 5) cases, together accounting for the most prevalent ND subtypes. All cases had short postmortem intervals, relatively high-quality RNA, and state-of-the-art neuropathological diagnoses. The resulting data (over 113 million reads in total, averaging 5.6 million reads per sample) and secondary expression analyses constitute an unprecedented look into the human cerebral cortical miRNome at a nucleotide resolution. While we find no apparent changes in isomiR or miRNA editing patterns in correlation with ND pathology, our results validate and extend previous miRNA profiling studies with regard to quantitative changes in NDs. In agreement with this idea, we provide independent cohort validation for changes in miR-132 expression levels in AD (n = 8) and FTLD (n = 14) cases when compared to controls (n = 8). The identification of common and ND-specific putative novel brain miRNAs and/or short-hairpin molecules is also presented. The challenge now is to better understand the impact of these and other alterations on neuronal gene expression networks and neuropathologies.

Document Type

Article

Publication Date

4-17-2013

Notes/Citation Information

Published in Journal of Alzheimer's Disease, v. 35, no. 2, p. 335-348.

© 2013 IOS Press and the authors. All rights reserved

The copyright holder has granted the permission for posting the article here.

The document available for download is the authors' post-peer-review final draft of the article.

The final publication is available at IOS Press through https://doi.org/10.3233/JAD-122350.

Digital Object Identifier (DOI)

https://doi.org/10.3233/JAD-122350

Funding Information

This work was supported by the Alzheimer Society of Canada and the Fonds de recherche du Québec-Santé (FRQS) and by grants from the National Institutes of Health (NS061933, AG036875, and AG028383).

Share

COinS