Azoles are antifungal drugs used to treat fungal infections such as candidiasis in humans. Their extensive use has led to the emergence of drug resistance, complicating antifungal therapy for yeast infections in critically ill patients. Combination therapy has become popular in clinical practice as a potential strategy to fight resistant fungal isolates. Recently, amphiphilic tobramycin analogues, C12 and C14, were shown to display antifungal activities. Herein, the antifungal synergy of C12 and C14 with four azoles, fluconazole (FLC), itraconazole (ITC), posaconazole (POS), and voriconazole (VOR), was examined against seven Candida albicans strains. All tested strains were synergistically inhibited by C12 when combined with azoles, with the exception of C. albicans 64124 and MYA-2876 by FLC and VOR. Likewise, when combined with POS and ITC, C14 exhibited synergistic growth inhibition of all C. albicans strains, except C. albicans MYA-2876 by ITC. The combinations of FLC-C14 and VOR-C14 showed synergistic antifungal effect against three C. albicans and four C. albicans strains, respectively. Finally, synergism between C12/C14 and POS were confirmed by time-kill and disk diffusion assays. These results suggest the possibility of combining C12 or C14 with azoles to treat invasive fungal infections at lower administration doses or with a higher efficiency.

Document Type


Publication Date


Notes/Citation Information

Published in Scientific Reports, v. 5, article 17070, p. 1-11.

Copyright © 2015, Macmillan Publishers Limited

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Digital Object Identifier (DOI)


Funding Information

This work was supported by the National Institutes of Health (NIH) grant AI090048 (to S.G.-T.) and by startup funds from the College of Pharmacy at the University of Kentucky (to S.G.-T.).

srep17070-s1.pdf (159 kB)
Supplementary Information