Authors

J. Adam, Creighton University
L. Adamczyk, AGH University of Science and Technology, Poland
J. R. Adams, The Ohio State University
James K. Adkins, University of KentuckyFollow
G. Agakishiev, Joint Institute for Nuclear Research, Russia
M. M. Aggarwal, Panjab University, India
Z. Ahammed, Variable Energy Cyclotron Centre, India
N. N. Ajitanand, State University of New York - Stony Brook
I. Alekseev, Alikhanov Institute for Theoretical and Experimental Physics, Russia
D. M. Anderson, Texas A & M University
R. Aoyama, University of Tsukuba, Japan
A. Aparin, Joint Institute for Nuclear Research, Russia
D. Arkhipkin, Brookhaven National Laboratory
E. C. Aschenauer, Brookhaven National Laboratory
M. U. Ashraf, Tsinghua University, China
F. Atetalla, Kent State University
A. Attri, Panjab University, India
G. S. Averichev, Joint Institute for Nuclear Research, Russia
X. Bai, Central China Normal University, China
V. Bairathi, National Institute of Science Education and Research, India
K. Barish, University of California - Riverside
A. J. Bassill, University of California - Riverside
A. Behera, State University of New York - Stony Brook
R. Bellwied, University of Houston
A. Bhasin, University of Jammu, India
A. K. Bhati, Panjab University, India
J. Bielcik, Czech Technical University in Prague, Czech Republic
J. Bielcikova, Nuclear Physics Institute AS CR, Czech Republic
L. C. Bland, Brookhaven National Laboratory
I. G. Bordyuzhin, Alikhanov Institute for Theoretical and Experimental Physics, Russia
Renee H. Fatemi, University of KentuckyFollow
Suvarna Ramachandran, University of KentuckyFollow

Abstract

We present the first measurement of the proton–Ω correlation function in heavy-ion collisions for the central (0–40%) and peripheral (40–80%) Au + Au collisions at √sNN = 200 GeV by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Predictions for the ratio of peripheral collisions to central collisions for the proton–Ω correlation function are sensitive to the presence of a nucleon–Ω bound state. These predictions are based on the proton–Ω interaction extracted from (2+1)-flavor lattice QCD calculations at the physical point. The measured ratio of the proton–Ω correlation function between the peripheral (small system) and central (large system) collisions is less than unity for relative momentum smaller than 40 MeV/c. Comparison of our measured correlation ratio with theoretical calculation slightly favors a proton–Ω bound system with a binding energy of ∼ 27 MeV.

Document Type

Article

Publication Date

3-10-2019

Notes/Citation Information

Published in Physics Letters B, v. 790, p. 490-497.

© 2019 Published by Elsevier B.V.

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Due to the large number of authors, only the first 30 and the authors affiliated with the University of Kentucky are listed in the author section above. For the complete list of authors, please download this article or visit: https://doi.org/10.1016/j.physletb.2019.01.055

Digital Object Identifier (DOI)

https://doi.org/10.1016/j.physletb.2019.01.055

Funding Information

Funded by SCOAP3.

This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, the Ministry of Education and Science of the Russian Federation, National Natural Science Foundation of China, Chinese Academy of Sciences, the Ministry of Science and Technology of China (973 Program No. 2014CB845400, 2015CB856900) and the Chinese Ministry of Education, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, ROSATOM of Russia and German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association.

Share

COinS