We present an analysis of physical conditions in the Orion Veil, an atomic photon-dominated region (PDR) that lies just in front (≈2 pc) of the Trapezium stars of Orion. This region offers an unusual opportunity to study the properties of PDRs, including the magnetic field. We have obtained 21 cm H i and 18 cm (1665 and 1667 MHz) OH Zeeman effect data that yield images of the line-of-sight magnetic field strength B los in atomic and molecular regions of the Veil. We find B los ≈ −50 to −75 μG in the atomic gas across much of the Veil (25'' resolution) and B los ≈ −350 μG at one position in the molecular gas (40'' resolution). The Veil has two principal H i velocity components. Magnetic and kinematical data suggest a close connection between these components. They may represent gas on either side of a shock wave preceding a weak-D ionization front. Magnetic fields in the Veil H i components are 3–5 times stronger than they are elsewhere in the interstellar medium where N(H) and n(H) are comparable. The H i components are magnetically subcritical (magnetically dominated), like the cold neutral medium, although they are about 1 dex denser. Comparatively strong fields in the Veil H i components may have resulted from low-turbulence conditions in the diffuse gas that gave rise to OMC-1. Strong fields may also be related to magnetostatic equilibrium that has developed in the Veil since star formation. We also consider the location of the Orion-S molecular core, proposing a location behind the main Orion H+ region.

Document Type


Publication Date


Notes/Citation Information

Published in The Astrophysical Journal, v. 825, no. 1, 2, p. 1-19.

© 2016. The American Astronomical Society. All rights reserved.

The copyright holder has granted the permission for posting the article here.

Digital Object Identifier (DOI)


Funding Information

This work has been supported in part by NSF grant AST 0908841 to T.H.T.