Signatures of warm absorbers are seen in soft X-ray spectra of about half of all type 1 Seyfert galaxies observed and in some quasars and blazars. We use the thermal equilibrium curve to study the influence of the shape of the ionizing continuum, density and the chemical composition of the absorbing gas on the existence and nature of the warm absorbers. We describe circumstances in which a stable warm absorber can exist as a multiphase medium or one with continuous variation in pressure. In particular, we find the following results: (i) the warm absorber exists only if the spectral index of the X-ray power-law ionizing continuum α > 0.2 and has a multiphase nature if α∼ 0.8, which interestingly is the spectral index for most of the observed type 1 Seyfert galaxies; (ii) thermal and ionization states of highly dense warm absorbers are sensitive to their density if the ionizing continuum is sufficiently soft, i.e. dominated by the ultraviolet; (iii) absorbing gas with super-solar metallicity is more likely to have a multiphase nature and (iv) the nature of the warm absorber is significantly influenced by the absence of iron and associated elements which are produced in the later stages of star formation history in Type Ia supernovae.

Document Type


Publication Date


Notes/Citation Information

Published in Monthly Notices of the Royal Astronomical Society, v. 393, issue 1, p. 83-98.

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2009 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

The copyright holder has granted the permission for posting the article here.

Digital Object Identifier (DOI)