Date Available

12-9-2019

Year of Publication

2019

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Arts and Sciences

Department/School/Program

Physics and Astronomy

First Advisor

Dr. Bradley Plaster

Abstract

It is a well known fact that the visible universe is made almost entirely of baryonic matter. Yet, this is also one of the greatest puzzles that physicists are trying to solve: Where did all of this matter come from in the first place? The Standard Model (SM) of particle physics predicts a baryon asymmetry that is much smaller than what is observed in nature. In order to try and explain this discrepancy, Sakharov (1967) postulated three necessary conditions for baryogenesis in the early universe. One of these is the requirement that charge conjugation (C) and the product of C and parity (P) symmetries are violated. Because the SM fails to generate the observed baryon asymmetry, additional sources of CP violation are needed in order to help reconcile theory and observation. Thus, physicists have been looking for extensions to the SM in search of an answer. The presence of a neutron Electric Dipole Moment (nEDM) would signal a new source of CP violation. A non-vanishing nEDM would provide evidence for the breaking of both parity (P) and time-reversal symmetry (T). Because CPT symmetry is assumed to be conserved and has not been found to be broken, this would signal CP violation.

To look for an nEDM, stored ultracold neutrons are placed in parallel and anti-parallel magnetic and electric fields and the Larmor precession frequency is carefully measured. A difference in the precession frequency of the neutrons in the two states of the fields would signal the existence of an nEDM. The current upper limit of the nEDM was set by the RAL-Sussex-ILL collaboration and stands at dn < 3.0x10-26 e cm (90% CL). Currently a new cryogenic apparatus is under construction at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) which aims to reduce the current upper limit by two orders of magnitude.

A central problem to all neutron EDM experiments is the generation of a highly uniform and stable magnetic field. Because the suppression of systematic effects that arise from magnetic field nonuniformities and temporal drifts is vital to the success of these experiments, it is important to have the ability to precisely control and monitor the magnetic field gradients inside of the experimental volume. However, it is not always possible to measure the field gradients within the region of interest directly. To remedy this issue in the SNS nEDM experiment, a field monitoring system has been designed and tested that will allow for the reconstruction of the field gradients inside of the fiducial volume using noninvasive measurements of the field components at discrete locations external to this volume. This document will outline the theoretical framework of our method and present the results of experimental and simulated studies performed and the engineering design for such a field monitoring system.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2020.018

Funding Information

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC0014622, August 2017 - July 2020.

Included in

Nuclear Commons

Share

COinS