Year of Publication

2017

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Arts and Sciences

Department

Physics and Astronomy

First Advisor

Dr. Renee Fatemi

Abstract

A complete, fundamental understanding of the proton must include knowledge of the underlying spin structure. The transversity distribution, h1(x), which describes the transverse spin structure of quarks inside of a transversely polarized proton, is only accessible through channels that couple h1(x) to another chiral odd distribution, such as the Collins fragmentation function (ΔN Dπ/q(z,jT)). Significant Collins asymmetries of charged pions have been observed in semi-inclusive deep inelastic scattering (SIDIS) data. These SIDIS asymmetries combined with e+e- process asymmetries have allowed for the extraction of h1(x) and ΔN Dπ/q(z,jT). However, the current uncertainties on h1(x) are large compared to the corresponding quark momentum and helicity distributions and reflect the limited statistics and kinematic reach of the available data. In transversely polarized hadronic collisions, Collins asymmetries may be isolated and extracted by measuring the spin dependent azimuthal distributions of charged pions in jets. This thesis will report on the first statistically significant Collins asymmetries extracted from √ s = 200 GeV hadronic collisions using 14 pb-1 of transversely polarized proton collisions at 57% average polarization.

Digital Object Identifier (DOI)

https://doi.org/10.13023/ETD.2017.318

Included in

Nuclear Commons

Share

COinS