Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Microbiology, Immunology, and Molecular Genetics

First Advisor

Dr. Charlotte Kaetzel


The mammalian intestine harbors an estimated 100 trillion microorganisms, which normally maintain a mutually beneficial relationship with the host. The intestinal epithelium consists of a single layer of intestinal epithelial cells (IECs) that provides a physical barrier as well as innate immune defense, preventing this vast community of microbes from entering host tissues. Secretory immunoglobulin A (SIgA) acts as the first line of antigen-specific immunity at the interface between the gut microbiota and the intestinal epithelium. Polymeric IgA secreted by plasma cells in the intestinal lamina propria is transported across IECs by the polymeric immunoglobulin receptor (pIgR). Defects in epithelial barrier and immune functions can lead to infections with opportunistic and pathogenic microbes and contribute to the etiology of inflammatory bowel disease (IBD). Here we investigate the ability of IEC biomarkers to define the mechanism and severity of intestinal inflammation, as well as provide insight into the function of IEC in regulating intestinal homeostasis and inflammation. Importantly, down-regulation of pIgR expression was a common feature in human IBD and mouse models of experimental colitis. One molecule of pIgR is consumed for every molecule of SIgA transported, thus high expression of pIgR is required to maintain sufficient supply of SIgA. Accordingly, we investigate the mechanisms by which IECs regulate pIgR expression in response to colonic bacteria. Cross-talk between the microbiota and IECs is mediated by pattern recognition receptors, including Toll-like receptors (TLR), leading to expression of gene products that enhance epithelial barrier function and innate immunity. The cytoplasmic adaptor protein MyD88 transduces signals from TLRs that recognize bacterial products. We show that pIgR induction by colonic bacteria is dependent on TLR4-MyD88 activation of NF-κB signaling. We examined the role of epithelial-specific MyD88 signaling in antibacterial immunity and epithelial expression of key gene products that participate in innate immunity in the gut by generating mice with an IEC-targeted deletion of the Myd88 gene (MyD88ΔIEC). MyD88ΔIEC mice display immunological and antimicrobial defects resulting in increased susceptibility to experimental colitis. We conclude that cross-talk between bacteria and IECs via MyD88-dependent signaling is crucial for maintenance of gut homeostasis.