To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of the particles ejected from the bottom edge of the wedge varies over three orders of magnitude, whereas the size of the ones ejected from the top (inclined) surface were more uniform (around 10 microns). On the bottom edge, the particles ejected near the leading edge were bulkier (10-1000 microns), where those that ejected further along, had a smaller size (0.1-1 microns).

Document Type

Conference Proceeding

Publication Date


Notes/Citation Information

Published in AIAA Scitech 2021 Forum.

Copyright © 2021 by Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin.

The copyright holders have granted the permission for posting the article here.

Digital Object Identifier (DOI)


Funding Information

Financial support for this work was provided by NASA Kentucky EPSCoR Award NNX10AV39A and NASA Award NNX13AN04A.

Related Content

Video of this presentation is available at: https://doi.org/10.2514/6.2021-1172.vid