Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation


Arts and Sciences



First Advisor

Dr. Margaret A. Readdy


In this dissertation we discuss three problems. We first show the classical q-Stirling numbers of the second kind can be expressed more compactly as a pair of statistics on a subset of restricted growth words. We extend this enumerative result via a decomposition of a new poset which we call the Stirling poset of the second kind. The Stirling poset of the second kind supports an algebraic complex and a basis for integer homology is determined. A parallel enumerative, poset theoretic and homological study for the q-Stirling numbers of the first kind is done. We also give a bijective argument showing the (q, t)-Stirling numbers of the first and second kind are orthogonal. In the second part we give combinatorial proofs of q-Stirling identities via restricted growth words. This includes new proofs of the generating function of q-Stirling numbers of the second kind, the q-Vandermonde convolution for Stirling numbers and the q-Frobenius identity. A poset theoretic proof of Carlitz’s identity is also included. In the last part we discuss a new expression for q-binomial coefficients based on the weighting of certain 01-permutations via a new bistatistic related to the major index. We also show that the bistatistics between the inversion number and major index are equidistributed. We generalize this idea to q-multinomial coefficients evaluated at negative q values. An instance of the cyclic sieving phenomenon related to flags of unitary spaces is also studied.

Digital Object Identifier (DOI)