The Kentucky Transportation Cabinet (KYTC), like many state transportation agencies, has seen demand for high-quality infrastructure skyrocket even as it endures reductions in staff numbers. To mitigate the effects of declining staff and bolster construction efficiency, the Cabinet has experimented with a variety of e-construction technologies, the goal of which are to abolish paper-based workflows and improve project-site monitoring activities. This research investigated the performance of three e-construction technologies on KYTC pilot projects — e-ticketing, paver mounted thermal profilers, and intelligent compaction. E-ticketing reduced the amount of time needed to retrieve material tickets and facilitated comparisons of theoretical tonnages to actual tonnages. Inspectors also reduced their exposure to hazardous jobsite conditions through the use of e-ticketing, while contractors strengthened their operational efficiencies. Paver mounted thermal profilers collected temperature data whose accuracy was not significantly different from temperature data gathered using conventional infrared guns. The spatially continuous data generated by profilers can aid in later monitoring of pavement performance and can be used to perform forensic investigations of pavement distress. Although other state transportation agencies have adopted intelligent compaction with considerable success, it produced inaccurate data on asphalt temperature and roller passes. Several factors may have contributed to this unexpected result, such as poor communication between project stakeholders and incorrectly executed equipment setup. The three technologies could potentially be adopted on a more widespread basis; however, it is critical to offer adequate training to equipment and software users, ensure that project stakeholders coordinate and communicate with one another, and be conscientious in the deployment and management of equipment.

Report Date


Report Number


Digital Object Identifier



© 2018 University of Kentucky, Kentucky Transportation Center

Information may not be used, reproduced, or republished without KTC’s written consent.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Center, the Kentucky Transportation Cabinet, the United States Department of Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names or trade names is for identification purposes and should not be considered an endorsement.