Date Available


Year of Publication


Document Type





Electrical Engineering

First Advisor

Vijay Singh


Indium tin oxide (ITO) and molybdenum are substrates of choice in the manufacture of the CdS-CIS photovoltaic cell, which is the base for the leading thin-film solar cell technology. Substantial advancement in this technology is expected if these devices can be made in nanoporous alumina (AAO) templates. The first step to this endeavor is to learn to form AAO templates on molybdenum and ITO substrates. This was accomplished, and the results are reported in this thesis. Starting substrates were glass, coated with either a thin molybdenum layer or a thin ITO layer. Aluminum was deposited on top of this conducting substrate. Oxalic acid was used as the electrolyte for anodization. In the case of molybdenum substrates, average pore diameter was 45 nm when an anodization voltage of 40 volts was used for approximately 46 minutes; current density was approximately 23 amps/sq. m. In the case of ITO substrates, pores of 45 nm diameter were obtained for approximately 20 minute anodization at 40 V; current density was 40 amps/sq. m; annealing of aluminum layer prior to anodization, at 550 oC (degrees Centigrade) for 90 minutes was needed to obtain good pores. A one micrometer thick CdS layer was electrodeposited inside the AAO pores on top of the ITO substrate. In preliminary experiments, CdS/Cu2S photovoltaic heterojunctions with an open circuit voltage of 242 mV were formed inside the nanopores.