Year of Publication

2007

Document Type

Thesis

College

Engineering

Department

Mechanical Engineering

First Advisor

Raymond P. LeBeau

Abstract

Since its introduction in 1997, the use of Detached Eddy Simulation (DES) and similar hybrid turbulence techniques has become increasingly popular in the field of CFD. However, with increased use some of the limitations of the DES model have become apparent. One of these is the dependence of DES on grid construction, particularly regarding the point of transition between the Reynolds-Averaged Navier-Stokes and Large Eddy Simulation models. An additional issue that arises with unstructured grids is the definition of the grid spacing in the implementation of a DES length scale. To lay the ground work to study these effects the Spalart-Allmaras one-equation turbulence model, SA based DES hybrid turbulence model, and the Scale Adaptive Simulation hybrid turbulence model are implemented in an unstructured grid CFD code, UNCLE. The implemented SA based DES model is validated for flow over a three-dimensional circular cylinder for three different turbulent Reynolds numbers. Validation included studying the pressure, skin friction coefficient, centerline velocity distributions averaged in time and space. Tools to output the mean velocity profiles and Reynolds stresses were developed. A grid generation code was written to generate a two/three dimensional circular cylinder grid to simulate flow over the cylinder in UNCLE. The models implemented and validated, and the additional tools mentioned will be used in the future.

Share

COinS