Date Available


Year of Publication


Document Type





Mechanical Engineering

First Advisor

James M. McDonough

Second Advisor

Kaveh A. Tagavi


Ultra-fast laser heating of nano-films is investigated using 3-D Dual Phase Lag heat transport equation with laser heating at different locations on the metal film. The energy absorption rate, which is used to model femtosecond laser heating, is modified to accommodate for three-dimensional laser heating. A numerical solution based on an explicit finite-difference method is employed to solve the DPL equation. The stability criterion for selecting a time step size is obtained using von Neumann eigenmode analysis, and grid function convergence tests are performed. DPL results are compared with classical diffusion and hyperbolic heat conduction models and significant differences among these three approaches are demonstrated. We also develop an implicit finite-difference scheme of Crank-Nicolson type for solving 1-D and 3-D DPL equations. The proposed numerical technique solves one equation unlike other techniques available in the literature, which split the DPL equation into a system of two equations and then apply discretization. Stability analysis is performed using a von Neumann stability analysis. In 3-D, the discretized equation is solved using delta-form Douglas and Gunn time splitting. The performance of the proposed numerical technique is compared with the numerical techniques available in the literature.