Year of Publication

2005

Document Type

Thesis

College

Engineering

Department

Electrical Engineering

First Advisor

YuMing Zhang

Abstract

Most smart actuators exhibit rate-dependant hysteresis when the working frequency is higher than 5Hz. Although the Preisach model has been a very powerful tool to model the static hysteresis, it cannot be directly used to model the dynamic hysteresis. Some researchers have proposed various generalizations of the Preisach operator to model the rate-dependant hysteresis, however, most of them are application-dependant and only valid for low frequency range. In this thesis, a first-order dynamic relay operator is proposed. It is then used to build a novel dynamic Preisach model. It can be used to model general dynamic hysteresis and is valid for a large frequency range. Real experiment data of magnetostrictive actuator is used to test the proposed model. Experiments have shown that the proposed model can predict all the static major and minor loops very well and at the same time give an accurate prediction for the dynamic hysteresis loops. The controller design using the proposed model is also studied. An inversion algorithm is developed and a PID controller with inverse hysteresis compensation is proposed and tested through simulations. The results show that the PID controller with inverse compensation is good at regulating control; its tracking performance is really limited (average error is 10 micron), especially for high frequency signals. Hence, a simplified predictive control scheme is developed to improve the tracking performance. It is proved through experiments that the proposed predictive controller can reduce the average tracking error to 2 micron while preserve a good regulating performance.

Share

COinS