Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type



Arts and Sciences


Physics and Astronomy

First Advisor

Dr. Joseph W. Brill


Studies on strongly correlated electron systems over decades have allowed physicists to discover unusual properties such as spin density waves, ferromagnetic and antiferromagnetic states with unusual ordering of spins and orbitals, and Mott insulating states, to name a few.

In this thesis, the focus will be on the specific heat property of these materials exhibiting novel electronic ground states in the presence and absence of a field. The purpose of these measurements is to characterize the phase transitions into these states and the low energy excitations in these states. From measurements at the phase transitions, one can learn about the amount of order involved [i.e. entropy: ΔS = ∫Δc p/T dT], while measurements at low temperatures illuminate the excitation spectrum. In order to study the thermodynamic properties of the materials at their phase transitions, a high sensitive technique, ac-calorimetry was used. The ac-calorimeter, workhorse of our low dimensional materials lab, is based on modulating the power that heats the sample and measuring the temperature oscillations of the sample around its mean value. The in-house ac-calorimetry set up in our lab has the capability to produce a quasi-continuous readout of heat capacity as a function of temperature. A variety of single crystals were investigated using this technique and a few among them are discussed in my thesis.

Since many of the crystals that are studied by our group are magnetically active, it becomes useful for us to also study them in the presence of a moderate to high magnetic field. This motivated me to design, develop, and build a heat capacity probe that would enable us to study the crystals in the presence of non-zero magnetic fields and at low temperatures. The probe helped us not only to revisit some of the studied materials and to draw firm conclusions on the previous results but also is vital in exploring the untouched territory of novel materials at high magnetic fields (~ 14 T).

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.