Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type



Arts and Sciences



First Advisor

Dr. Richard Millman


Differential geometry is about space (a manifold) and a geometric structure on that space. In Riemann’s lecture (see [17]), he stated that “Thus arises the problem, to discover the matters of fact from which the measure-relations of space may be determined...”. It is key then to understand how manifolds differ from one another geometrically. The results of this dissertation concern how the geometry of a manifold changes when we alter metrical connections. We investigate how diverse geodesics are in different metrical connections. From this, we investigate a new class of metrical connections which are dependent on the class of smooth functions. Specifically, we fix a Riemannian metric and investigate the geometry of the manifold when we change the metrical connections associated with the fixed Riemannian metric. We measure the change in the Riemannian curvatures associated with this new class of metrical connections, and then give uniqueness and existence criterion for curvature of compact 2-manifolds. These results depend on the use of Hodge Theory and ultimately on the function f we choose to define a metrical connection.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.