Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type





Plant Physiology

First Advisor

Dr. Guiliang Tang

Second Advisor

Dr. Arthur G. Hunt


Plant microRNAs play important roles in plant growth and development. Here we investigated the roles of miRNAs in the plant abiotic stress, development and viral infection. MicroRNA membrane array analysis using five different abiotic stress treatments resulted in the identification of 8 novel stress inducible miRNA-families. Functional studies on novel stress inducible miR168 revealed its functional relation with abiotic stress. Over expression of miR168 in Arabidopsis showed upregulation of four stress related miRNAs (miR163, miR167, miR398 and miR408). Analysis of 9 independent transgenic lines showed induction of miR398, an oxidative stress responsive miRNA with a corresponding down regulation of its target genes. Heavy metal oxidative stress tolerance bioassays confirmed the susceptibility of transgenics compared to the wild types indicating the fact that the miR168 is indirectly involved in plant abiotic stress by inducing other stress responsive miRNAs.

MicroRNAs are highly conserved across the plant kingdom. A miRNA atlas was drafted for different tomato organs and fruit stages using the known miRNA sequences from different plants species. A large variation in both number and level of miRNA expression pattern was observed among different organs as well as among fruit stages. In the present investigation, we have found a window of expression for different miRNAs during the fruit development. A gradual decrease in the expression levels of miR160h, miR167a and miR399d and a gradual increase in miR164a have been noticed towards the fruit maturation while miR398b showed dual peaks during fruit development indicating a potential role of various miRNAs in fruit development and maturation.

Sonchus yellow net virus (SYNV) infected Nicotinana benthamiana leaves showed severe disease symptoms at two weeks post infection (WPI) and gradually recovered from the SYNV infection after 4-5 WPI correlating with the overall miRNA levels. The miRNA array and northern analysis showed an overall reduction of miRNA biogenesis during 2WPI followed by restoration to normal levels supporting the idea that the SYNV indeed interfered with the host miRNA levels which caused the symptoms and recovery phenotypes. Overall studies on plant abiotic stress, development and viral infection showed important roles of miRNAs in different aspects of plant life.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.