Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type





Pharmaceutical Sciences

First Advisor

Dr. Steven R. Post


A key cardiovascular signaling molecule involved in both physiologic and pathologic regulation of cardiomyocytes is the small molecular weight G-protein, Ras. Differential effects of Ras are mediated by multiple effector molecules, including the RalGEFs which activate Ral. Studies performed in cardiomyocytes have indicated a role for Ral in cardiac hypertrophic signaling and the RalGEF family member, Rgl2, was shown to specifically interact with Ras in the heart. Therefore, I hypothesized that Rgl2 was an important Ras effector that would regulate cardiomyocyte signaling.

To elucidate the potential importance of Rgl2 in regulating cardiomyocyte signaling, a gain-of-function approach was utilized in which NRVMs were infected with an adenovirus to increase Rgl2 expression. Using this approach, I found that Rgl2 increased Ral-GTP levels, Ras-GTP levels, and PI3-kinase-Akt signaling, but decreased ERK phosphorylation. Overall, my results suggest a model in which Rgl2 disrupts Ras-Raf and Ras-RasGAP interaction to decrease ERK phosphorylation and increase Ras-GTP, respectively. Furthermore, Rgl2-induced Ral activation promotes the enhanced PI3- kinase-Akt signaling. The physiologic consequence of Rgl2 signaling is difficult to predict, but the increase in PI3-kinase-Akt signaling would be expected to promote cardiomyocyte survival and enhance cardiac function, both of which are characteristic of physiologic hypertrophy.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.