Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type



Arts and Sciences



First Advisor

Dr. Uwe Nagel


Given a simple graph G, the corresponding edge ideal IG is the ideal generated by the edges of G. In 2007, Ha and Van Tuyl demonstrated an inductive procedure to construct the minimal free resolution of certain classes of edge ideals. We will provide a simplified proof of this inductive method for the class of trees. Furthermore, we will provide a comprehensive description of the finely graded Betti numbers occurring in the minimal free resolution of the edge ideal of a tree. For specific subclasses of trees, we will generate more precise information including explicit formulas for the projective dimensions of the quotient rings of the edge ideals. In the second half of this thesis, we will consider the class of simple bipartite graphs known as Ferrers graphs. In particular, we will study a class of monomial ideals that arise as initial ideals of the defining ideals of the toric rings associated to Ferrers graphs. The toric rings were studied by Corso and Nagel in 2007, and by studying the initial ideals of the defining ideals of the toric rings we are able to show that in certain cases the toric rings of Ferrers graphs are level.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.