Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type





Plant and Soil Science

First Advisor

Dr. Ole Wendroth


Raindrop kinetic energy and sheet flow can disintegrate aggregates during interrill erosion, a process responsible for non point source pollution. Also, the dissolution process during aggregate wetting can affect interrill erosion. These factors can be responsible for changes in particle size distribution in the sediment, especially when different tillage systems are compared. The effect of soil tillage and management on soil properties is not uniform, which determine a wide range of runoff and sediment delivery rate. Variety in these rates can be associated with pore functions and their interactions with aggregate stability. One of the objectives of this study was to analyze the wetting behavior of soil aggregates from soils under conventional tillage compared with soils under no tillage. It was expected that the wetting rate is a function of pore system and that different tillage systems would affect the soil wetting behavior based on their impact on soil structure and shape. The second objective was to analyze the relationships among soil wetting rate, particle movement, organic carbon (OC) and iron release with the sediment produced via interrill erosion. A rainfall simulation experiment was performed in the field to determine the effect of low and fast soil wetting on total soil loss through high and low kinetic rainfall energy, sediment particle size distribution and OC loss. Two soils that differed in soil textural composition and that were under conventional and no tillage were investigated. Soil loss depended largely on soil characteristics and wetting rate. Particle size distribution of sediment was changed by treatment and the proportion of particles smaller than 0.053 mm increased over time, at any kinetic energy wetting level. Temporal OC and iron release were constant, which required a continuous source principally due to aggregate slaking. An empirical model was proposed to improve an interrill erosion equation by using a bond-dissolution mechanism that identified soil as a regulator of particle release.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.