Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type





Electrical Engineering

First Advisor

Dr. Sen-ching Samson Cheung


Digital inpainting is the technique of filling in the missing regions of an image or a video using information from surrounding area. This technique has found widespread use in applications such as restoration, error recovery, multimedia editing, and video privacy protection. This dissertation addresses three significant challenges associated with the existing and emerging inpainting algorithms and applications. The three key areas of impact are 1) Structure completion for image inpainting algorithms, 2) Fast and efficient object based video inpainting framework and 3) Perceptual evaluation of large area image inpainting algorithms.

One of the main approach of existing image inpainting algorithms in completing the missing information is to follow a two stage process. A structure completion step, to complete the boundaries of regions in the hole area, followed by texture completion process using advanced texture synthesis methods. While the texture synthesis stage is important, it can be argued that structure completion aspect is a vital component in improving the perceptual image inpainting quality. To this end, we introduce a global structure completion algorithm for completion of missing boundaries using symmetry as the key feature. While existing methods for symmetry completion require a-priori information, our method takes a non-parametric approach by utilizing the invariant nature of curvature to complete missing boundaries. Turning our attention from image to video inpainting, we readily observe that existing video inpainting techniques have evolved as an extension of image inpainting techniques. As a result, they suffer from various shortcoming including, among others, inability to handle large missing spatio-temporal regions, significantly slow execution time making it impractical for interactive use and presence of temporal and spatial artifacts. To address these major challenges, we propose a fundamentally different method based on object based framework for improving the performance of video inpainting algorithms. We introduce a modular inpainting scheme in which we first segment the video into constituent objects by using acquired background models followed by inpainting of static background regions and dynamic foreground regions. For static background region inpainting, we use a simple background replacement and occasional image inpainting. To inpaint dynamic moving foreground regions, we introduce a novel sliding-window based dissimilarity measure in a dynamic programming framework. This technique can effectively inpaint large regions of occlusions, inpaint objects that are completely missing for several frames, change in size and pose and has minimal blurring and motion artifacts. Finally we direct our focus on experimental studies related to perceptual quality evaluation of large area image inpainting algorithms. The perceptual quality of large area inpainting technique is inherently a subjective process and yet no previous research has been carried out by taking the subjective nature of the Human Visual System (HVS). We perform subjective experiments using eye-tracking device involving 24 subjects to analyze the effect of inpainting on human gaze. We experimentally show that the presence of inpainting artifacts directly impacts the gaze of an unbiased observer and this in effect has a direct bearing on the subjective rating of the observer. Specifically, we show that the gaze energy in the hole regions of an inpainted image show marked deviations from normal behavior when the inpainting artifacts are readily apparent.

Included in

Engineering Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.