Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type





Biomedical Engineering

First Advisor

Dr. Eugene N Bruce


Carbon monoxide (CO) is an odorless, colorless, tasteless gas that binds to hemoglobin with high affinity. This property underlies the use of low doses of CO to determine hemoglobin mass (MHb) in the fields of clinical and sports medicine. However, hemoglobin bound to CO is unable to transport oxygen and exposure to high CO concentrations is a significant environmental and occupational health concern. These contrasting aspects of CO—clinically useful in low doses but potentially lethal in higher doses—mandates a need for a quantitative understanding of the temporal profiles of the uptake and distribution of CO in the human body. In this dissertation I have (i) used a mathematical model to analyze CO-rebreathing techniques used to estimate total hemoglobin mass and proposed a CO-rebreathing procedure to estimate hemoglobin mass with low errors, (ii) enhanced and validated a multicompartment model to estimate O2, CO and CO2 tensions, bicarbonate levels, pH levels, blood carboxyhemoglobin (HbCO) levels, and carboxymyoglobin (MbCO) levels in all the vascular (arterial, mixed venous and vascular subcompartments of the tissues) and tissue (brain, heart and skeletal muscle) compartments of the model in normoxia, hypoxia, CO hypoxia, hyperoxia, isocapnic hyperoxia and hyperbaric oxygen, and (iii) used this developed mathematical model to propose a treatment to improve O2 delivery and CO removal by comparing O2 and CO levels during different treatment protocols administered for otherwise-healthy CO-poisoned subjects.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.