Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type






First Advisor

Dr. Jonathan Satin


In the heart, the primary role of the L-type calcium channel (LTCC) CaV1.2 is to conduct calcium into cardiomyocytes and initiate contraction. However, part of the CaV1.2 channel itself, the cleaved carboxyl-terminus (CCt) can also localize to the nucleus and regulate gene transcription. Therefore, the goal of this dissertation project was to determine the role and regulation of CCt in the embryonic and adult heart. The global hypothesis of my dissertation project is that CCt localizes to the nucleus in embryonic and adult cardiomyocytes via a calcium-mediated mechanism and regulates transcription. A model of pharmacological LTCC block-induced perturbation of murine embryonic heart development was first utilized to study the role of CCt. Pharmacological block at embryonic day 10 perturbed cardiogenesis and increased CaV1.2 expression. This result was not mimicked by removal of extracellular calcium or inhibition of calcium release from the sarcoplasmic reticulum. Co-currently, pharmacological block decreased CCt nuclear localization in embryonic cardiomyocytes. At the transcriptional level, CCt suppressed the CaV1.2 promoter. This indicated that the observed upregulation of CaV1.2 induced by pharmacological block may be caused by nuclear localization of the transcriptional repressor, CCt. Therefore, the conclusion was made that pharmacological LTCC block perturbed embryonic cardiogenesis by decreasing nuclear localization of the transcription factor CCt; implying a role for CCt in embryonic heart development. Next, CCt regulation was studied in the adult heart. Similar to the embryonic heart, pharmacological LTCC block decreased nuclear localization of CCt. Inhibition of the calcium activated phosphatase calcineurin also decreased CCt nuclear localization. To determine a role for CCt in the adult heart, CCt nuclear localization was measured in response to hypertrophic stimuli. Serum-induced cardiomyocyte hypertrophy significantly increased nuclear localization of CCt. In conclusion, this dissertation supports the hypothesis that CCt localizes to the nucleus in embryonic and adult cardiomyocytes, and that this regulation is mediated by calcium entry into the cardiomyocyte. Furthermore, data from this dissertation suggests that CCt nuclear localization may play an important role in embryonic heart development and adult cardiac hypertrophy.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.