Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type



Arts and Sciences



First Advisor

Dr. Marian Anton

Second Advisor

Dr. Edgar Enochs


A motivational problem for group homology is a conjecture of Quillen that states, as reformulated by Anton, that the second homology of the general linear group over R = Z[1/p; ζp], for p an odd prime, is isomorphic to the second homology of the group of units of R, where the homology calculations are over the field of order p. By considering the group extension spectral sequence applied to the short exact sequence 1 → SL2GL2GL1 → 1 we show that the calculation of the homology of SL2 gives information about this conjecture. We also present a series of algorithms that finds an upper bound on the second homology group of a finitely-presented group. In particular, given a finitely-presented group G, Hopf's formula expresses the second integral homology of G in terms of generators and relators; the algorithms exploit Hopf's formula to estimate H2(G; k), with coefficients in a finite field k. We conclude with sample calculations using the algorithms.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.