Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation


Arts and Sciences



First Advisor

Dr. Matthew Zook


This dissertation focuses on the key role that big data can play in minimizing the perceived disconnect between social theory and quantitative methods in the discipline of geography. It takes as its starting point the geographic concept of space, which is conceptualized very differently in social theory versus quantitative methodology. Contrary to this disparity, an examination of the disciplinary history reveals a number of historic precedents and potential pathways for a rapprochement, especially when combined with some of the new possibilities of big data. This dissertation also proposes solutions to two common barriers to the adoption of big data in the social sciences: accessing and collecting such data and, subsequently, meaningful analysis. These methods and the theoretical foundation are combined in three case studies that show the successful integration of a quantitative research methodology with social theories on space. The case studies demonstrate how such an approach can create new and alternative understandings of urban space. In doing so it answers three specific research questions: (1) How can big data facilitate the integration of social theory on space with quantitative research methodology? (2) What are the practical challenges and solutions to moving “beyond the geotag” when utilizing big data in geographical research? (3) How can the quantitative analysis of big data provide new and useful insight in the complex character of social space? More specifically, what insights does such an analysis of relational social space provide about urban mobility and cognitive neighborhoods?