Year of Publication

2014

Degree Name

Master of Science (MS)

Document Type

Master's Thesis

College

Arts and Sciences

Department

Earth and Environmental Sciences (Geology)

First Advisor

Dr. David P. Moecher

Abstract

Three outstanding problems related to the tectonic evolution of the Western Blue Ridge in the eastern Great Smoky Mtns. (GSM) include: (1) the nature of the Greenbrier Fault, previously interpreted as a younger over older pre-Taconic thrust fault with ~24 km of displacement between the Snowbird and Great Smoky Groups; (2) the relationship of regional metamorphism, expressed by the growth of porphyroblastic index minerals, to folding and foliation development in pelitic metasediments; (3) the relation of deformation to regional Taconian metamorphism. These problems were addressed in previous studies that did not have detailed mapping and petrography as a context. By using 1:24000 bedrock mapping in the eastern GSM in the area of the Greenbrier Fault and where regional metamorphic isograds are telescoped as a context, it can be concluded that: (1) the Greenbrier Fault exhibits an unconstrainable amount of post-metamorphic slip along the contact of the Great Smoky and Snowbird Groups and is not a major tectonic feature within the western Blue Ridge; (2) there is no direct spatial/coeval relationship between porphyroblast growth and foliation formation/matrix deformation that is consistent throughout the study area; (3) further work and mapping outside of the study area (S and SE) is needed when considering the relation of deformation to regional Taconian metamorphism, because of the non-pelitic nature of the Great Smoky and Snowbird Groups.

Plate 1.pdf (49116 kB)
WEST HALF OF THE COVE CREEK GAP GEOLOGIC QUADRANGLE

Plate 2.pdf (85307 kB)
COMPARISON OF THE WEST HALF OF THE COVE CREEK GAP GEOLOGIC QUADRANGLE, AS MAPPED BY HADLEY AND GOLDSMITH (1963), SOUTHWORTH ET AL. (2012), AND SPAULDING (2013)

Plate 3.pdf (146875 kB)
2013 GSA ANNUAL MEETING POSTER

Included in

Geology Commons

Share

COinS