Advances in machine learning technologies in recent years have facilitated developments in autonomous robotic systems. Designing these autonomous systems typically requires manually specified models of the robotic system and world when using classical control-based strategies, or time consuming and computationally expensive data-driven training when using learning-based strategies. Combination of classical control and learning-based strategies may mitigate both requirements. However, the performance of the combined control system is not obvious given that there are two separate controllers. This paper focuses on one such combination, which uses gravity-compensation together with reinforcement learning (RL). We present a study of the effects of gravity compensation on the performance of two reinforcement learning algorithms when solving reaching tasks using a simulated seven-degree-of-freedom robotic arm. The results of our study demonstrate that gravity compensation coupled with RL can reduce the training required in reaching tasks involving elevated target locations, but not all target locations.

Document Type


Publication Date


Notes/Citation Information

Published in Robotics, v. 10, issue 1.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)


Funding Information

This research was funded by Department of Electrical and Computer Engineering at the University of Kentucky.

Related Content

The data, codes, and their corresponding results for this research work are available in the following GitHub link: https://github.com/jfugal3/ThesisPython.