Date Available


Year of Publication


Degree Name

Master of Science in Electrical Engineering (MSEE)

Document Type

Master's Thesis




Electrical and Computer Engineering

First Advisor

Dr. Aaron M. Cramer


Multifrequency averaging is one of the widely used modeling and simulation techniques today for the analysis and design of power electronic systems. This technique is capable of providing the average behavior as well as the ripple behavior of power electronic systems. Hysteresis current control has fast response and internal current stability through controlling switches to maintain the current within a given hysteresis band of a given current command. However the state space variables in a hysteresis controlled system cannot be directly approached by multifrequency averaging method because of time varing switching frequency. In this thesis, a method of applying multifrequency averaging to hysteresis current controlled dc-dc converters is proposed. A dc-dc converter model with the application of this method has been successfully developed and validated both in simulation and experiment.