Year of Publication

2014

Degree Name

Master of Science in Electrical and Computer Engineering (MSECE)

Document Type

Master's Thesis

College

Engineering

Department

Electrical Engineering

First Advisor

Dr. Stephen Gedney

Abstract

The frequency demands of radiating systems are moving into the terahertz band with potential applications that include sensing, imaging, and extremely broadband communication. One commonly used method for generating and detecting terahertz waves is to excite a voltage-biased photoconductive antenna with an extremely short laser pulse. The pulsed laser generates charge carriers in a photoconductive substrate which are swept onto the metallic antenna traces to produce an electric current that radiates or detects a terahertz band signal. Therefore, analysis of a photoconductive antenna requires simultaneous solutions of both semiconductor physics equations (including drift-diffusion and continuity relations) and Maxwell’s equations. A multi-physics analysis scheme based on the Discontinuous-Galerkin Finite-Element Time-Domain (DGFETD) is presented that couples the semiconductor drift-diffusion equations with the electromagnetic Maxwell’s equations. A simple port model is discussed that efficiently couples the two equation sets. Various photoconductive antennas were fabricated using TiAu metallization on a GaAs substrate and the fabrication process is detailed. Computed emission intensities are compared with measured data. Optimized antenna designs based on the analysis are presented for a variety of antenna configurations.

Share

COinS