Author ORCID Identifier

Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Electrical and Computer Engineering

First Advisor

Todd Hastings


Radiolysis is a complex phenomenon in which molecules subjected to ionizing radiation form new chemical species. Electron-beam irradiation has proven to be a versatile approach for significantly altering materials’ properties and forms the basis for electron-beam lithography using both organic and inorganic resists. Electron-beam exposure is normally carried out under high vacuum conditions to reduce contamination and allow for unhindered interaction between the electrons and the resist material. Exposure under an ambient gas at sub-atmospheric pressures has been found to provide a distinct mechanism which can be exploited to circumvent some of the challenges associated with material processing and significantly alter or enhance material’s properties. This dissertation discusses the modifications in standard electron beam resist characteristics during gas assisted electron beam pattering.

We studied the effect of water vapor pressure on positive and negative tone electron-beam patterning of poly methyl methacrylate (PMMA). For both positive and negative-tone patterning, it was found that increasing the water vapor pressure considerably improved the contrast of PMMA. As expected from electron scattering in a gas, the clearing dosage for positive tone patterning gradually increased with vapor pressure. Also, electron scattering in water vapor yielded a substantially larger clear region around the negative-tone patterns. This effect could be useful for increasing the range of the developed region around cross-linked PMMA far beyond the backscattered electron range. As a result, VP-EBL for PMMA offers a new means of tuning clearing/onset dose and contrast while enabling more control over the size of the cleared region around negative-tone patterns.

We provide a novel way to simultaneously tune the emission wavelength and enhance the fluorescence intensity of fluorophores formed by irradiating polystyrene with a focused electron beam under various gaseous environments. We studied the effect of electron dose and gas pressure on the emission spectra and photon yield of irradiated polystyrene film on a variety of substrates. Up to 10x enhancement in fluorescence yield was achieved using water vapor and the peak emission wavelength tuned over a wide wavelength range. Thus, localized electron-beam synthesis of fluorophores in polystyrene can be controlled by both dose and by ambient water-vapor pressure. This technique could enable innovative approaches to photonics where fluorophores with tunable emission properties can be locally introduced by electron-beam patterning.

We also studied the effect of ambient gases on contrast and resolution of PMMA on conducting and insulating substrates. E-beam exposures were conducted under vacuum conditions and 1 mbar of water vapor, helium, nitrogen and argon to study their effect on contrast and resolution of PMMA on silicon, fused silica and soda lime glass substrates. On silicon, exposure under water vapor yielded contrast values significantly higher than vacuum exposure, consistent with our previous work. However, exposure under helium yielded slightly improved contrast compared to vacuum exposure. On insulating substrates exposure under helium environment yielded contrast values significantly higher compared to vacuum exposure. The clearing dose was found to increase with the gases’ molecular weight and proton number, consistent with the increase in scattering cross-section. The improved contrast and sensitivity (dose to clear) of PMMA under helium motivated us to study the resolution under various gases. Resolution testing indicated that despite the lower clearing dose, helium still exhibited the best resolution with 25-nm half-pitch dense lines and spaces clearly resolved on soda lime glass. Thus, VP-EBL of PMMA under helium yields higher sensitivity and contrast on insulating substrates without sacrificing resolution.

Digital Object Identifier (DOI)

Funding Information

This work was supported by the National Science Foundation (NSF) under Grant No. CMMI-2135666.

This work was performed, in part, at the University of Kentucky Center for Nanoscale Science and Engineering and Electron Microscopy Center, members of the National Nanotechnology Coordinated Infrastructure (NNCI), which was supported by the National Science Foundation (No. NNCI-2025075).

Available for download on Thursday, May 01, 2025