Author ORCID Identifier

Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Computer Science

First Advisor

Dr. Dakshnamoorthy Manivannan


A Mobile Ad hoc Network (MANET) consists of a set of nodes which can form a network among themselves. MANETs have applications in areas such as military, disaster rescue operations, monitoring animal habitats, etc. where establishing fixed communication infrastructure is not feasible. Routing protocols designed for MANETs can be broadly classified as position-based (geographic), topology-based and hybrid. Geographic routing uses location information of nodes to route messages. Topology-based routing uses network state information for route discovery and maintenance. Hybrid routing protocols use features in both position-based and topology-based approaches. Position-based routing protocols route packets towards the destination using greedy forwarding (i.e., an intermediate node forwards packets to a neighbor that is closer to the destination than itself). If a node has no neighbor that is closer to the destination than itself, greedy forwarding fails. In this case, we say there is void. Different position-based routing protocols use different methods for dealing with voids. Topology-based routing protocols can be classified into on-demand (reactive) routing protocols and proactive routing protocols. Generally, on-demand routing protocols establish routes when needed by flooding route requests throughout the entire network, which is not a scalable approach. Reactive routing protocols try to maintain routes between every pair of nodes by periodically exchanging messages with each other which is not a scalable approach also. This thesis addresses some of these issues and makes the following contribution.

First, we present a position-based routing protocol called Greedy Routing Protocol with Backtracking (GRB) which uses a simple backtracking technique to route around voids, unlike existing position-based routing protocols which construct planarized graph of the local network to route around voids. We compare the performance of our protocol with the well known Greedy Perimeter Stateless Routing (GPSR) protocol and the Ad-Hoc On-demand Distance Vector (AODV) routing protocol as well as the Dynamic Source Routing (DSR) protocol. Performance evaluation shows that our protocol has less control overhead than those of DSR, AODV, and GPSR. Performance evaluation also shows that our protocol has a higher packet-delivery ratio, lower end-to-end delay, and less hop count, on average, compared to AODV, DSR and GPSR. We then present an on-demand routing protocol called ``Hybrid On-demand Greedy Routing Protocol with Backtracking for Mobile Ad-Hoc Networks" which uses greedy approach for route discovery. This prevents flooding route requests, unlike the existing on-demand routing protocols. This approach also helps in finding routes that have lower hop counts than AODV and DSR. Our performance evaluation confirms that our protocol performs better than AODV and DSR, on average, with respect to hop count, packet-delivery ratio and control overhead.

In MANETs, all nodes need to cooperate to establish routes. Establishing secure and valid routes in the presence of adversaries is a challenge in MANETs. Some of the well-known source routing protocols presented in the literature (e.g., Ariadne and endairA) which claim to establish secure routes are susceptible to hidden channel attacks. We address this issue and present a secure routing protocol called SAriadne, based on sanitizable signatures. We show that our protocol detects and prevents hidden channel attacks.

Digital Object Identifier (DOI)