Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Computer Science

First Advisor

Dr. Mukesh Singhal


This thesis describes and develops two planarization algorithms for geographic routing and a geographic routing protocol for mobile ad hoc and sensor networks. As all nodes are mobile and there is no fixed infrastructure, the design of routing protocols is one of the most challenging issues in mobile ad hoc and sensor networks. In recent years, greedyface- greedy (GFG) geographic routing protocols have been widely used, which need nodes to construct planar graphs as the underlying graphs for face routing.

Two kinds of planarization algorithms have been developed, idealized and realistic planarization algorithms, respectively. The idealized planarization algorithms make the ideal assumption that the original network graph is a unit-disk graph (UDG). On the other hand, the realistic planarization algorithms do not need the original network to be a UDG.

We propose an idealized planarization algorithm, which constructs an Edge Constrained Localized Delaunay graph (ECLDel). Compared to the existing planarized localized Delaunay graph [42], the construction of an ECLDel graph is far simpler, which reduces the communication cost and saves the network bandwidth.

We propose a Pre-Processed Cross Link Detection Protocol (PPCLDP), which generates a planar spanning subgraph of the original network graph in realistic environments with obstacles. The proposed PPCLDP outperforms the existing Cross Link Detection Protocol [32] with much lower communication cost and better convergence time.

In GFG routing protocols, greedy routing may fail at concave nodes, in which case, face routing is applied to recover from the greedy routing failure. This may cause extra hops in routing in networks containing voids. We propose a Hill-Area-Restricted (HAR) routing protocol, which avoids the extra hops taken in the original GFG routing. Compared to the existing Node Elevation Ad hoc Routing [4], the proposed HAR guarantees the packet delivery and decreases the communication cost greatly.