Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Computer Science

First Advisor

Dr. Jun Zhang


In this dissertation, Richardson extrapolation and other computational techniques are used to develop a series of high accuracy high efficiency solution techniques for solving partial differential equations (PDEs).

A Richardson extrapolation-based sixth-order method with multiple coarse grid (MCG) updating strategy is developed for 2D and 3D steady-state equations on uniform grids. Richardson extrapolation is applied to explicitly obtain a sixth-order solution on the coarse grid from two fourth-order solutions with different related scale grids. The MCG updating strategy directly computes a sixth-order solution on the fine grid by using various combinations of multiple coarse grids. A multiscale multigrid (MSMG) method is used to solve the linear systems resulting from fourth-order compact (FOC) discretizations. Numerical investigations show that the proposed methods compute high accuracy solutions and have better computational efficiency and scalability than the existing Richardson extrapolation-based sixth order method with iterative operator based interpolation.

Completed Richardson extrapolation is explored to compute sixth-order solutions on the entire fine grid. The correction between the fourth-order solution and the extrapolated sixth-order solution rather than the extrapolated sixth-order solution is involved in the interpolation process to compute sixth-order solutions for all fine grid points. The completed Richardson extrapolation does not involve significant computational cost, thus it can reach high accuracy and high efficiency goals at the same time.

There are three different techniques worked with Richardson extrapolation for computing fine grid sixth-order solutions, which are the iterative operator based interpolation, the MCG updating strategy and the completed Richardson extrapolation. In order to compare the accuracy of these Richardson extrapolation-based sixth-order methods, truncation error analysis is conducted on solving a 2D Poisson equation. Numerical comparisons are also carried out to verify the theoretical analysis.

Richardson extrapolation-based high accuracy high efficiency computation is extended to solve unsteady-state equations. A higher-order alternating direction implicit (ADI) method with completed Richardson extrapolation is developed for solving unsteady 2D convection-diffusion equations. The completed Richardson extrapolation is used to improve the accuracy of the solution obtained from a high-order ADI method in spatial and temporal domains simultaneously. Stability analysis is given to show the effects of Richardson extrapolation on stable numerical solutions from the underlying ADI method.