Year of Publication

2018

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Engineering

Department

Chemical and Materials Engineering

First Advisor

Dr. Daniel W. Pack

Abstract

Including inherited genetic diseases, like lipoprotein lipase deficiency, and acquired diseases, such as cancer and HIV, gene therapy has the potential to treat or cure afflicted people by driving an affected cell to produce a therapeutic protein. Using primarily viral vectors, gene therapies are involved in a number of ongoing clinical trials and have already been approved by multiple international regulatory drug administrations for several diseases. However, viral vectors suffer from serious disadvantages including poor transduction of many cell types, immunogenicity, direct tissue toxicity and lack of targetability. Non-viral polymeric gene delivery vectors (polyplexes) provide an alternative solution but are limited by poor transfection efficiency and cytotoxicity. Microfluidic (MF) nano-precipitation is an emerging field in which researchers seek to tune the physicochemical properties of nanoparticles by controlling the flow regime during synthesis. Using this approach, several groups have demonstrated the successful production of enhanced polymeric gene delivery vectors. It has been shown that polyplexes created in the diffusive flow environment have a higher transfection efficiency and lower cytotoxicity. Other groups have demonstrated that charge-stabilizing polyplexes by sequentially adding polymers of alternating charges improves transfection efficiency and serum stability, also addressing major challenges to the clinical implementation of non-viral gene delivery vectors.

To advance non-viral gene delivery towards clinical relevance, we have developed a microfluidic platform (MS) that produces conventional polyplexes with increased transfection efficiency and decreased toxicity and then extended this platform for the production of ternary polyplexes. This work involves first designing microfluidic devices using computational fluid dynamics (CFD), fabricating the devices, and validating the devices using fluorescence flow characterization and absorbance measurements of the resulting products. With an integrated separation mechanism, excess polyethylenimine (PEI) is removed from the outer regions of the stream leaving purified polyplexes that can go on to be used directly in transfections or be charge stabilized by addition of polyanions such as polyglutamic acid (PGA) for the creation of ternary polyplexes. Following the design portion of the research, the device was used to produce binary particle characterization was carried out and particle sizes, polydispersity and zeta potential of both conventional and MS polyplexes was compared. MS-produced polyplexes exhibited up to a 75% reduction in particle size compared to BM-produced polyplexes, while exhibiting little difference in zeta potential and polydispersity. A variety of standard biological assays were carried out to test the effects of the vectors on a variety of cell lines – and in this case the MS polyplexes proved to be both less toxic and have higher transfection efficiency in most cell lines. HeLa cells demonstrated the highest increase in transgene expression with a 150-fold increase when comparing to conventional bulk mixed polyplexes at the optimum formulation. A similar set of experiments were carried out with ternary polyplexes produced by the separation device. In this case it was shown that there were statistically significant increases in transfection efficiency for the MS-produced ternary polyplexes compared to BM-produced poyplexes, with a 23-fold increase in transfection activity at the optimum PEI/DNA ratio in MDAMB-231 cells. These MS-produced ternary polyplexes exhibited higher cell viability in many instances, a result that may be explained but the reduction in both free polymer and ghost particles.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2018.307

Share

COinS