Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Chemical and Materials Engineering

First Advisor

Dr. Stephen E. Rankin


This work addresses fundamental aspects of designing templates and curing conditions for the synthesis of mesoporous metal oxide thin films. The first section addresses selection of cationic-carbohydrate surfactant mixtures to synthesize templated silica thin films for selective adsorption of simple carbohydrates based on molecular imprinting. Nuclear magnetic resonance and fluorescence spectroscopy results suggest a novel structure for mixtures of alkyl glucopyranosides or xylopyranosides with cationic (trimethylammonium) surfactants. Despite thermodynamically favorable mixing, the carbohydrate headgroups in the mixed micelle adopt an inverted configuration with their headgroups in the micelle core, and therefore are inaccessible for molecular imprinting. This orientation occurs even when the alkyl tail length of the carbohydrate surfactant is greater than that of the cationic surfactant, but this limitation can be overcome by introducing a triazole linker to the carbohydrate surfactant. The next section addresses the effects of aging conditions on the structural and chemical evolution of surfactant templated silica thin films. The third section describes the synthesis of carbohydrate/cationic surfactant imprinted silica thin films with orthogonally oriented cylindrical pores by modifying the glass surface with a random copolymer. The last part of the dissertation addresses the effect of pore orientation on the transformation mechanism of block copolymer templated titania thin films during high temperature curing. Mesoporous titania thin films can be used for photochemical and solar cell applications, but doing so requires addressing the tradeoff between loss of mesostructural order and growth of crystallinity during thermal treatment. By using advanced x-ray scattering techniques it has been shown that the titania films with vertically oriented pores can better withstand the anisotropic stress that develops during thermal treatment compare to titania films with mixed pore orientation. For instance, films with parallel or mixed pores can only be heated at 400 °C for a brief time (~10 min) without loss of order, while orthogonally oriented films can be heated at 550 °C or greater for extended time periods (on the order of hours) without significant loss of long-range mesopore structure. Detailed kinetic modeling was applied to enable the comparison of activation energy for mesostructure loss in films as a function of pore orientation and thickness.