Date Available


Year of Publication


Degree Name

Master of Science (MS)

Document Type

Master's Thesis




Chemical Engineering

First Advisor

Dr. Thomas D. Dziubla

Second Advisor

Dr. David A. Puleo


Oral mucositis is a painful and debilitating chronic inflammatory condition that can result from chemo and/or radiotherapy. While current treatment strategies which provide temporary relief exist, there is still an unmet clinical need for a robust long active barrier strategy which can simultaneously provide protection and release drug to enhance the wound healing response. It is proposed that an affinity based layer-by-layer self-assembled barrier administered as a series of mouth rinses can allow for wound specific drug delivery, providing an effective regenerative therapy.

In this work, biotinylated poly(acrylic acid) is used to develop LBL assemblies based upon biotin-streptavidin affinity interactions. To explore the ability of developed LBL assemblies to resist the harsh intraoral environment, in vitro chemical and ex vivo mechanical tests are performed. The stability results demonstrate significant LBL barrier stability with wear resistance. From principal component regression analysis, factors such as polymer MW and number of layers in assemblies contributed significantly to chemical barrier stability. Also it is observed that the extent of biotin conjugation plays a significant role in LBL development and in mechanical stability. Thus, the proposed affinity based multilayered assemblies with their excellent barrier properties offer a modular treatment approach in oral mucosal injuries.