Year of Publication

2012

Degree Name

Master of Science (MS)

Document Type

Master's Thesis

College

Arts and Sciences

Department

Chemistry

First Advisor

Dr. Mark D. Watson

Abstract

Organic electronics have received significant development in the last few decades. p- Type materials are much more in availability than n-type now. There are only a few examples of air-stable n-type materials. The design and synthesis of novel air-stable ntype materials is still a focus of research. Herein is described a study to evaluate the effectiveness of a novel electron-withdrawing group, composed of three electronwithdrawing groups connected in series, to impart material properties known to be favorable for obtaining air-stable n-types. The smaller acenes, naphthalene and anthracene, carrying these electron-withdrawing groups were prepared and studied by UV-Vis absorption spectroscopy and solution electrochemical measurements to estimate changes in frontier molecular orbital energies and single crystal X-ray diffraction to determine packing motif. These measurements suggest that the new materials could be promising as n-type semiconductors in organic field effect transistor (OFET) and as acceptors for organic photovoltaic (OPV) cells. The reasons are based on: (1) the close intermolecular contacts seen in X-ray crystal structures, some of them showing 3D faceto- face stack. (2) Electrochemical measurements indicate LUMO energy levels suitable for air-stable n-type materials.

Included in

Chemistry Commons

Share

COinS