Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation


Arts and Sciences



First Advisor

Dr. Marcelo I. Guzman


Atmospheric aerosols affect climate change by altering the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosol (SOA) from gas phase precursors is relatively well understood, it does not account for the abundance of SOA observed during field measurements. Recently it has become apparent that in-aerosol aqueous chemical reactions likely provide some of the missing sources of SOA production, and many studies of aqueous phase processes are underway.

This work explores the fates of the simplest 2-oxocarboxylic acids, glyoxylic acid (GA) and pyruvic acid (PA), under simulated solar irradiation in the aqueous phase. Field measurements have revealed that mono-, di-, and oxocarboxylic acids are abundant species present in atmospheric waters. Of particular interest are 2-oxocarboxylic acids because their conjugated carbonyl moieties result in significant UV-visible absorption above 300 nm, allowing absorption of sunlight in the lower troposphere, thereby initiating radical photochemistry and leading to formation of SOA.

In Chapter 2 of this work, GA is demonstrated to primarily undergo α-cleavage, producing CO, CO2, formic acid, and the key SOA precursor glyoxal. Trace amounts of oxalic acid and tartaric acid are also quantified. Additionally, the dark thermal aging of glyoxylic acid photoproducts, studied by UV-visible and fluorescence spectroscopies, reveals that the optical properties of the solutions are altered radically by the glyoxal produced. The optical properties display periodicity during photolytic-dark cycles, reflecting behavior expected for aerosols during nighttime and daytime cycles.

In contrast, Chapter 3 shows that PA photoreacts via a proton-coupled electron transfer (PCET) mechanism that produces CO2 and organic acids of increased complexity with 6 to 8 carbons. A combination of analytical techniques including 1H and 13C NMR; 13C gCOSY NMR; mass spectrometry; chromatography; and isotope substitutions allows the organic products to be identified as: 2,3-dimethyltartaric acid; 2-hydroxy-2-((3-oxobutan-2-yl)oxy)propanoic acid; and the quasi-intermediate 2-(1-carboxy-1-hydroxyethoxy)-2-methyl-3-oxobutanoic acid.

In Chapter 4, PA irradiation is also shown to consume dissolved oxygen so fast that solutions become depleted within a few minutes depending on reaction conditions. This fast process directly produces the atmospheric oxidant singlet oxygen, which enhances the oxidizing capacity of the atmosphere. Additionally, PA photochemistry only proceeds under very acidic conditions (pH ≤ 3.5), like those in most atmospheric aerosols.

Finally, we require a thorough understanding of the behavior of 2-oxocarboxylic acids at the air-water interface of aerosols because much of the GA and PA present in the atmosphere is produced in the gas phase and needs to partition into the aqueous phase to undergo photoreaction. Therefore, Chapter 5 uses surface sensitive online electrospray ionization mass spectrometry (OESI-MS) to demonstrate that carboxylic acids delivered from the gas phase onto the surface of aqueous microdroplets display enhanced acidities relative to bulk water solutions.

This work demonstrates that aqueous photolysis is a very competitive atmospheric fate for both GA and PA. It also shows that these photoreactions are capable of contributing substantially to SOA formation by building chemical complexity and forming oxidants directly.

Digital Object Identifier (DOI)

Funding Information

This research was supported by: the National Science Foundation under CAREER award CHE-1255290; the National Aeronautics and Space Administration under the Earth and Space Science Fellowship program (NESSF); and the University of Kentucky through both a Kentucky Opportunity Fellowship and a Graduate School Academic Year Fellowship.

Available for download on Saturday, December 19, 2020