A disparate array of plasma/serum markers provides evidence for chronic inflammation in human prediabetes, a condition that is most closely replicated by standard mouse models of obesity and metaflammation. These remain largely nonactionable and contrast with our rich understanding of inflammation in human type 2 diabetes. New data show that inflammatory profiles produced by CD4+ T cells define human prediabetes as a unique inflammatory state. Regulatory T cells (Treg) control mitochondrial function and cytokine production by CD4+ effector T cells (Teff) in prediabetes and type 2 diabetes by supporting T helper (Th)17 or Th1 cytokine production, respectively. These data suggest that Treg control of Teff metabolism regulates inflammation differentially in prediabetes compared with type 2 diabetes. Queries of genes that impact mitochondrial function or pathways leading to transcription of lipid metabolism genes identified the fatty acid importer CD36 as highly expressed in Treg but not Teff from subjects with prediabetes. Pharmacological blockade of CD36 in Treg from subjects with prediabetes decreased Teff production of the Th17 cytokines that differentiate overall prediabetes inflammation. We conclude that Treg control CD4+ T cell cytokine profiles through mechanisms determined, at least in part, by host metabolic status. Furthermore, Treg CD36 uniquely promotes Th17 cytokine production by Teff in prediabetes.

Document Type


Publication Date


Digital Object Identifier (DOI)