Year of Publication


Degree Name

Master of Science in Biomedical Engineering

Document Type

Master's Thesis




Biomedical Engineering

First Advisor

Dr. Abhijit Patwardhan


Sudden Cardiac Death (SCD) is the largest cause of natural deaths in the USA, accounting for over 300,000 deaths annually. The major reason for SCD is Ventricular Arrhythmia (VA). Therefore, there is need for exploration of approaches to predict increased risk for VA. Alternans of the T wave in the ECG (TWA) is widely investigated as a potential predictor of VA, however, clinical trials show that TWA has high negative predictive value but poor positive predictive value. A possible reason that TWA has a large number of false positives is that a pattern of alternans known as concordant alternans, may not be as arrhythmogenic as another pattern which is discordant alternans. Currently, it is not possible to discern the pattern of alternans using clinical ECGs. Prior studies from our group have showed that alternans of the maximum rate of depolarization of an action potential also can occur when Action Potential Duration (APD) alternans occurs and the relationship between these two has the potential to create spatial discord. These results suggest that exploration of the co-occurrence of depolarization and repolarization alternans has the potential to stratify the outcome of TWA tests. In order to investigate the link between depolarization alternans and changes in ECGs, we used a mathematical model created previously in our research group which simulated ECGs from the cellular level changes observed in our experimental studies. These results suggest that the changes in ECGs should appear as alternating pattern of the amplitude of the R wave. Because there are a variety of factors which may also cause the R wave amplitude to change, we used signal analysis and statistical modeling to determine the link between the observed changes in R wave amplitude and depolarization alternans. Results from ECGs recorded from patients show that amplitude of the R wave can change as predicted by our experimental results and mathematical model. Using TWA as the marker of repolarization alternans and R Wave Amplitude Alternans (RWAA) as the marker of depolarization alternans, we investigated the phase relation between depolarization and repolarization alternans in clinical grade ECG and observed that this relationship does change spontaneously, consistent with our prior results from animal studies. Results of the present study support further investigation of the use of RWAA as a complementary method to TWA to improve its positive predictive value.

Digital Object Identifier (DOI)

Funding Information

Kentucky Science and Engineering Foundation (KSEF RDE18) and NSF EPSCoR RII Track-2.