Year of Publication

2017

Degree Name

Master of Science in Biomedical Engineering

Document Type

Master's Thesis

College

Engineering

Department/School/Program

Biomedical Engineering

First Advisor

Dr. Hainsworth Y. Shin

Abstract

Fluid pressures regulate endothelial cell (EC) tubulogenic activity involving fibroblast growth factor 2 (FGF-2) and its receptor, FGF receptor 2 (FGFR2). Our lab has recently shown that sustained 20 mmHg hydrostatic pressure (HP) upregulates EC sprout formation in a FGF2-dependent fashion. This upregulation of sprout formation may be due to enhanced FGF-2 / FGFR2 interactions in the presence of 20 mmHg HP. We hypothesize that exposure of ECs to 20 mmHg sustained HP enhances FGF-2 binding kinetics. We used a custom hydrostatic pressure system, immunofluorescence, and FACS to quantify FGF-2 binding by ECs in the absence or presence of a range of HPs for 30 minutes. Relative to cells maintained under control pressure, ECs exposed to 20, but neither 5 nor 40 mmHg, displayed a significant increase in binding affinity to FGF-2. EC binding of VEGF-A, another angiogenic growth factor, was unaffected by similar pressure stimuli. Additional studies showed that pressure-selective FGF-2 binding was independent of FGFR2 surface expression. These results implicate the FGF-2 axis in the pressure-sensitive, magnitude-dependent angiogenic processes which we have previously described. The present study provides novel insight regarding the involvement of FGF-2 signaling and interstitial pressure changes in various microvascular physiological and pathobiological processes.

Digital Object Identifier (DOI)

https://doi.org/10.13023/ETD.2017.395

Share

COinS