Year of Publication

2019

Degree Name

Master of Science (MS)

Document Type

Master's Thesis

College

Arts and Sciences

Department

Biology

First Advisor

Dr. Nicholas McLetchie

Abstract

Unequal sex ratios are widespread in dioecious plants and understanding their cause is important to understanding fundamental aspects of their population dynamics, and yet what causes biased sex ratios in plants is still poorly understood. Competition experiments have been used in plants to predict the outcome of species interactions, but they have rarely been used to help explain sex ratio bias. This study used a response surface competition design to measure the relative competitive abilities of the sexes of the bryophyte Marchantia inflexa (a thallus liverwort of Marchantiaceae) to predict the outcome of competition before the onset of sexual reproductive structures. In bryophytes, dioecy and sex ratio bias is especially common, making them effective organisms for studying sex ratio bias. Given the frequency of female bias in bryophytes, the hypothesis was that females will show a higher competitive ability relative to males. The experiment was conducted in greenhouse conditions at several densities and proportions over the course of seven months. As individuals grew and formed clumps, identities were tracked, and growth measurements were made using photographs and computer imaging software. Both sexes grew on average 41% more with the opposite sex relative to their single-sex cultures. A model predicting future sex ratios showed coexistence between the sexes and predicted a male biased sex ratio of 3.2 males to 1 female. A trade-off was observed for males where single-sex cultures contained more asexual structures than mixed-sex cultures and the reverse for growth rate. Higher levels of asexual reproduction in males in single-sex cultures might be selected for to increase male dispersal for a higher probability of encountering females. This pattern was not found for females. The overyielding results suggest an interaction effect may exist due to niche differentiation between the sexes. In addition, the results suggest that in some dioecious plants a change in sex ratio can occur before differences in their allocation to sexual reproduction.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2019.428

Funding Information

Ribble grant recipient 2018

Available for download on Thursday, November 19, 2020

Share

COinS