Authors

G. Barro, University of California - Santa Cruz
S. M. Faber, University of California - Santa Cruz
P. G. Pérez-González, Universidad Complutense de Madrid, Spain
C. Pacifici, Yonsei University Observatory, South Korea
J. R. Trump, Pennsylvania State University
D. C. Koo, University of California - Santa Cruz
S. Wuyts, Max-Planck-Institut für extraterrestrische Physik, Germany
Y. Guo, University of California - Santa Cruz
E. Bell, University of Michigan
A. Dekel, Hebrew University, Israel
L. Porter, University of California - Santa Cruz
J. Primack, University of California - Santa Cruz
H. Ferguson, Space Telescope Science Institute
M. L. N. Ashby, Harvard-Smithsonian Center for Astrophysics
K. Caputi, University of Groningen, Netherlands
D. Ceverino, Universidad Autónoma de Madrid, Spain
D. Croton, Swinburne University of Technology, Australia
G. G. Fazio, Harvard-Smithsonian Center for Astrophysics
M. Giavalisco, University of Massachusetts
L. Hsu, Max-Planck-Institut für extraterrestrische Physik, Germany
Dalibor D. Kocevski, University of KentuckyFollow
A. Koekemoer, Space Telescope Science Institute
P. Kurcynski, Rutgers University
P. Kollipara, University of California - Santa Cruz
J. Lee, Yonsei University Observatory, South Korea
D. H. McIntosh, University of Missouri - Kansas City
E. McGrath, Colby College
C. Moody, University of California - Santa Cruz
R. Somerville, Rutgers University
C. Papovich, Texas A&M University
M. Salvato, Max-Planck-Institut für extraterrestrische Physik, Germany
P. Santini, INAF-Osservatorio Astronomico di Roma, Italy
T. Tal, University of California - Santa Cruz
A. van der Wel, Max-Planck-Institut für Astronomie, Germany
C. C. Williams, University of Massachusetts
S. P. Willner, Harvard-Smithsonian Center for Astrophysics
A. Zolotov, Hebrew University, Israel

Abstract

We analyze the star-forming and structural properties of 45 massive (log(M/M ) >10) compact star-forming galaxies (SFGs) at 2 < z < 3 to explore whether they are progenitors of compact quiescent galaxies at z ~ 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray-bright active galactic nucleus (AGN). In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally concentrated light profiles and spheroidal morphologies similar to quiescent galaxies and are thus strikingly different from other SFGs, which typically are disk-like and sometimes clumpy or irregular. Most compact SFGs lie either within the star formation rate (SFR)-mass main sequence (65%) or below it (30%), on the expected evolutionary path toward quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (τ) star formation histories (SFHs) or physically motivated SFHs drawn from semianalytic models (SAMs). SAMs predict longer formation timescales and older ages ~2 Gyr, which are nearly twice as old as the estimates of the τ models. Both models yield good spectral energy distribution fits, indicating that the systematic uncertainty in the age due to degeneracies in the SFH is of that order of magnitude. However, SAM SFHs better match the observed slope and zero point of the SFR-mass main sequence. Contrary to expectations, some low-mass compact SFGs (log(M/M ) =10-10.6) have younger ages but lower specific SFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers and disk instabilities (DIs) are both able to shrink galaxies, but DIs are more frequent (60% versus 40%) and form more concentrated galaxies. We confirm this result via high-resolution hydrodynamic simulations.

Document Type

Article

Publication Date

7-25-2014

Notes/Citation Information

Published in The Astrophysical Journal, v. 791, no. 1, article 52, p. 1-23.

© 2014. The American Astronomical Society. All rights reserved.

Reproduced by permission of the AAS.

Digital Object Identifier (DOI)

http://dx.doi.org/10.1088/0004-637X/791/1/52

Funding Information

Support for Program number HST-GO-12060 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. G.B. acknowledges support from NSF grant AST-08-08133. P.G.P.-G. acknowledges support from grant AYA2012-31277-E. This work has made use of the Rainbow Cosmological Surveys Database, which is operated by the Universidad Complutense de Madrid (UCM), partnered with the University of California Observatories at Santa Cruz (UCO/Lick, UCSC). C.P. acknowledges the support by the KASI-Yonsei Joint Research Program for the Frontiers of Astronomy and Space Science funded by the Korea Astronomy and Space Science Institute. J.L. acknowledges the support by the National Research Foundation of Korea through the SRC grant to the Center for Galaxy Evolution Research and the Doyak grant (No. 20090078756).

apj497709f1_lr.jpg (238 kB)
Fig. 1 Standard

apj497709f1_hr.jpg (293 kB)
Fig. 1 High-Resolution

apj497709f1.ppt (299 kB)
Fig. 1 Powerpoint

apj497709f2_lr.jpg (54 kB)
Fig. 2 Standard

apj497709f2_hr.jpg (181 kB)
Fig. 2 High-Resolution

apj497709f2.ppt (76 kB)
Fig. 2 Powerpoint

apj497709f3_lr.jpg (115 kB)
Fig. 3 Standard

apj497709f3_hr.jpg (322 kB)
Fig. 3 High-Resolution

apj497709f3.ppt (145 kB)
Fig. 3 Powerpoint

apj497709f4_lr.jpg (134 kB)
Fig. 4 Standard

apj497709f4_hr.jpg (298 kB)
Fig. 4 High-Resolution

apj497709f4.ppt (167 kB)
Fig. 4 Powerpoint

apj497709f5_lr.jpg (60 kB)
Fig. 5 Standard

apj497709f5_hr.jpg (70 kB)
Fig. 5 High-Resolution

apj497709f5.ppt (85 kB)
Fig. 5 Powerpoint

apj497709f6_lr.jpg (81 kB)
Fig. 6 Standard

apj497709f6_hr.jpg (175 kB)
Fig. 6 High-Resolution

apj497709f6.ppt (108 kB)
Fig. 6 Powerpoint

apj497709f7_lr.jpg (68 kB)
Fig. 7 Standard

apj497709f7_hr.jpg (82 kB)
Fig. 7 High-Resolution

apj497709f7.ppt (93 kB)
Fig. 7 Powerpoint

apj497709f8_lr.jpg (123 kB)
Fig. 8 Standard

apj497709f8_hr.jpg (124 kB)
Fig. 8 High-Resolution

apj497709f8.ppt (153 kB)
Fig. 8 Powerpoint

apj497709f9_lr.jpg (95 kB)
Fig. 9 Standard

apj497709f9_hr.jpg (301 kB)
Fig. 9 High-Resolution

apj497709f9.ppt (123 kB)
Fig. 9 Powerpoint

apj497709f10_lr.jpg (107 kB)
Fig. 10 Standard

apj497709f10_hr.jpg (129 kB)
Fig. 10 High-Resolution

apj497709f10.ppt (137 kB)
Fig. 10 Powerpoint

apj497709f11_lr.jpg (115 kB)
Fig. 11 Standard

apj497709f11_hr.jpg (139 kB)
Fig. 11 High-Resolution

apj497709f11.ppt (146 kB)
Fig. 11 Powerpoint

apj497709f12_lr.jpg (90 kB)
Fig. 12 Standard

apj497709f12_hr.jpg (90 kB)
Fig. 12 High-Resolution

apj497709f12.ppt (117 kB)
Fig. 12 Powerpoint

apj497709f13_lr.jpg (135 kB)
Fig. 13 Standard

apj497709f13_hr.jpg (161 kB)
Fig. 13 High-Resolution

apj497709f13.ppt (165 kB)
Fig. 13 Powerpoint

apj497709f14_lr.jpg (114 kB)
Fig. 14 Standard

apj497709f14_hr.jpg (304 kB)
Fig. 14 High-Resolution

apj497709f14.ppt (145 kB)
Fig. 14 Powerpoint

apj497709f15_lr.jpg (44 kB)
Fig. 15 Standard

apj497709f15_hr.jpg (86 kB)
Fig. 15 High-Resolution

apj497709f15.ppt (59 kB)
Fig. 15 Powerpoint

apj497709f16_lr.jpg (59 kB)
Fig. 16 Standard

apj497709f16_hr.jpg (116 kB)
Fig. 16 High-Resolution

apj497709f16.ppt (85 kB)
Fig. 16 Powerpoint

apj497709f17_lr.jpg (58 kB)
Fig. 17 Standard

apj497709f17_hr.jpg (113 kB)
Fig. 17 High-Resolution

apj497709f17.ppt (84 kB)
Fig. 17 Powerpoint

apj497709f18_lr.jpg (53 kB)
Fig. 18 Standard

apj497709f18_hr.jpg (182 kB)
Fig. 18 High-Resolution

apj497709f18.ppt (76 kB)
Fig. 18 Powerpoint

apj497709t1_ascii.txt (7 kB)
Table 1 ASCII

apj497709t1_lr.gif (56 kB)
Table 1 Typeset Image i

apj497709t1a_lr.gif (76 kB)
Table 1 Typeset Image ii

Share

COinS