Year of Publication

2015

Degree Name

Master of Science in Mechanical Engineering (MSME)

Document Type

Master's Thesis

College

Engineering

Department

Mechanical Engineering

First Advisor

Dr. Alexandre Martin

Abstract

The effective radiative conductivity of fibrous material is an important part of the evaluation of the thermal performance of fibrous insulators. To better evaluate this material property, a three-dimensional direct simulation model which calculates the effective radiative conductivity of fibrous material is proposed. Two different geometries are used in this analysis.

The simplified model assumes that the fibers are in a cylindrical shape and does not require identically-sized fibers or a symmetric configuration. Using a geometry with properties resembling those of a fibrous insulator, a numerical calculation of the geometric configuration factor is carried out. The results show the dependency of thermal conductivity on temperature as well as the orientation of the fibers. The calculated conductivity values are also used in the continuum heat equation, and the results are compared to the ones obtained using the direct simulation approach, showing a good agreement.

In continue, the simulated model is replaced by a realistic geometry obtained from X-ray micro-tomography. To study the radiative heat transfer mechanism of fibrous carbon, three-dimensional direct simulation modeling is performed. A polygonal mesh computed from tomography is used to study the effect of pore geometry on the overall radiative heat transfer performance of fibrous insulators. An robust procedure is presented for numerical calculation of the geometric configuration factor to study energy-exchange processes among small surface areas of the polygonal mesh.

The methodology presented here can be applied to obtain accurate values of the effective conductivity, thereby increasing the fidelity in heat transfer analysis.

Share

COinS